切换到宽版
  • 3285阅读
  • 7回复

【果友自选自翻石油英语】之固井工程软件的使用(部分)——摘自哈里伯顿固井 [复制链接]

上一主题 下一主题
离线zxtoday
 
发帖
987
财富
0
威望
88
交易币
0
只看楼主 倒序阅读 使用道具 0楼 发表于: 2009-05-11 | 石油求职招聘就上: 阿果石油英才网
Using WELLPLAN(Part)
Copyright by Landmark Graphics Corporation, Halliburton
Using the fatigue plot
The View>Plot>Fatigue Graph presents the bending or buckling stress as a ratio of the fatigue limit.

Using Tables to Analyze Results    
Tables are a very useful form of viewing analysis results. Tabular results are organized in a way that makes it easy to quickly find information you are looking for.
Using the Summary Loads Table
The View>Table>Summary Loads table contains information pertaining to all sections of the work string and is a good place to begin your analysis. This table contains a load summary for the operating modes specified on the Normal Analysis Mode Data dialog. The View>Report>Summary Loads contains similar information. For each operating mode, the following information is provided: stress mode indicator, buckling mode indicator, torque at rotary table, windup, surface measured weight, total stretch, and neutral point.

What are the Loads For a Particular Operating Mode?
For information on an individual operating mode, use View>Table>Load Data. The View>Report>Detail Report contains similar data. Information presented on the table includes measured depth, component type, distance from bit, internal pressure, external pressure, axial force (pressure area and buoyancy method), drag, torque, twist, stretch, sinusoidal buckling force, helical buckling fore, buckling mode flag, and steer mode flag.

What are the Stresses For a Particular Operating Mode?
Use View>Table>Stress Data and select an operating mode. This table contains information pertaining to all sections of the work string. Data door each operating mode is specified on a separate table. This table contains information similar to the View>Plot>Stress Graph, including; measured depth, component type, distance from bit, hoop stress, radial stress, torsional stress, shear stress, axial stress, buckling stress, bending stress, BSMF, von Misses stress, von Misses stress ratio, and fatigue ratio.


Analyzing Results Using Reports
Reports are another form of presenting normal analysis results. However, if you will be analyzing more than one operating mode, using plots or tables is an easier way to view the results
Using the Detailed Report
Most of the information presented on the View>Report>Detail is an available on tables, or in graphical form on plots. However, the Detailed Report also includes the operating parameters and case data(as specified on the report options dialog) used in the analysis. Plots and tables do not include this information.
When you are generating a report for an several operating modes, the information for each operating mode is separate from all other operating modes. For example, all tripping in analysis is kept separate from the tripping out analysis. Because there is a lot of data presented on the Detailed Report, it is recommended that reports be limited to analysis of one or two operating modes at a time. Otherwise the reports can get very long and difficult to read.
Analysis Mode Methodology
Each of the next four sections covers one of the analysis modes available in the Torque Drag module. In each section, the major analysis steps for the analysis mode are discussed. Within the analysis steps there may be a reference to a calculation. The names of the calculations are presented in italic for recognition. Many calculations apply to more than one analysis mode. To avoid duplicating information, the calculations are presented alphabetically in the section titled Supporting Information and Calculations. If you require more information about a particular calculation, please refer to “Supporting Information and Calculations” on page 217.
Normal Analysis
In a Normal Analysis the calculation are performed for a work string, in a three-dimensional well bore, at one bit depth, and with one set of operational parameters. If any one of these items change (different bit depth, different work string, different mud weight, and so forth) then the Normal Analysis must be re-run.
A Normal Analysis can investigate six load cases or operating conditions. These six load cases consist of tripping out, tripping in, rotating on bottom, rotating off bottom, sliding, and back reaming. During the analysis the following steps are performed.
1.    The first step is to initialize all load cases with the loads at the bit, including torques
2.    And axial force. These parameters are input on the Normal Analysis Mode Data dialog. For a Normal Analysis, the loads at the bit must be input, so the surface loads can be calculated.
3.    For both soft and stiff string models, the work string is broken into segments (elements) with a length equal to either a minimum of 30 feet or to the component a length. This defines the segment to be analyzed. After the analysis of a segment is complete, the segment above is analyzed. This procedure is repeated until the entire string has been analyzed.
For each segment, the following steps are performed:
a)    Interpolate the survey data at start and end of segment using the surveys entered in the Survey Editor(on the Case menu).Calculate the build rate, turn rate and dogleg severity. The minimum curvature method is used for all survey calculations. If the survey had tortuosity applied, the “tortured” surveys are used.
b)    Determine the well bore at this depth, and modify the tubular wall thickness based on the Pipe Wall Thickness Modification Due to Pipe Class calculation (page 233).
c)    Compute the weight per foot of the segment in fluid and at the well bore angle using the Buoyed Weight calculation (page 221).
Because the work string is lying in a well bore surrounded by fluids, there are resultant hydrostatic pressures acting on all interior and exterior surfaces of pipe. The Buoyed Weight calculations determine the resultant weight of the segment considering the hydrostatic pressures acting on it.
d)    Determine the force required to buckle the segment in the well bore using the Critical Buckling Force calculations (page 222). The critical buckling force is the axial force required to be exerted on a work string initiate buckling. Buckling first occurs when compressive axial forces exceed a critical buckling force. The axial force computed using the Buoyancy Method (Axial Force calculations, page 218) is used to compare with the critical buckling force to determine the onset of buckling. This is because the critical buckling force calculations are based on the same assumptions regarding hydrostatic pressure.
e)    Calculate the normal(side) force using the Side Force calculations for the Soft Mode(page 237). The side force or normal force is a measurement of the force exerted by the well bore onto the work string.
f)    Calculate the drag acting on the segment using the Drag Force calculations (page 226). The magnitude of the drag force is influenced by the selection of Friction Factor.
g)    Determine the axial forces acting on the segment using the Axial Force calculation (page 218). Axial forces act along the axis of the working string.
h)    If buckling occurs, determine the additional side force due to buckling by using the Additional Side Force calculations (page 217).
i)    Calculate string torque using the Torque calculations (page 244). Any input bit torque will be added to calculated torque.
j)    Determine stresses using the Stress calculations (page 239).
k)    Perform Fatigue calculations (page 228).
l)    Perform Twist calculations (page 246) and Stretch calculations (page 242).
4.    Apply Sheave Friction Correction calculations (page 234)to tension at surface. This correction is only made if specified on the Torque Drag Setup dialog.
5.    Compute pick up and slack off for tripping load cases.
6.    Calculate maximum weight on bit to buckle(sinusoidal and helical)the work string, and maximum allowable over pull.
Calibrate Friction Analysis
Calibrate Friction Analysis calculates the coefficient of friction along the well bore using actual (field) data collected while drilling. This provides a means of calibrating the program model against actual field results. The following are an overview of the calculations performed.
1. The work string is broken into the minimum of 30 feet, or the component length. This is the segment to be analyzed. After the analysis of a segment is complete, the segment above it will be analyzed. This procedure is repeated until the entire string has been analyzed.
a) Interpolate survey at start and end of segment. Calculate build rate, turn rates and dogleg severity. The minimum curvature method is used for all survey calculations. If the surveys had Tortuosity(page 244)applied,the“tortured”surveys are used.
b) Determine the well bore at this depth, and apply Pipe Wall Thickness Modification Due to Pipe Class calculations (page 233).
c) Compute the weight per foot of the segment in fluid and at the well bore angle using the Buoyed Weight calculations (page 221). Because the work string is lying in a well bore surrounded by fluids, there are resultant hydrostatic pressures acting on all interior and exterior surfaces of the pipe. The Buoyed Weight calculations determine the resultant weight of the segment considering the hydrostatic pressures acting on it.
d) Estimate the coefficient of friction for either the cased hole, or the open hole, or both. For each of the load cases, the following steps (1 through 5) are performed until the calculated torque and hook loads match the input or field values. If the values don’t match another coefficient of friction is estimated, and the following steps are performed again.
1. Calculate the normal (side) force using the Side Force (page 235) calculations for the soft string model or for the stiff string model. The side force or normal force is a measurement of the force exerted by the well bore onto the work string.
2. Calculate the drag acting on the segment using the Drag Force calculations (page 226).The magnitude of the drag force is influenced by the selection of the Friction Factor.
3. Determine the axial forces acting on the segment using the Axial Force calculations (page 218).Axial forces act along the axis of the work string.
4. Calculate string torque using the Torque calculations (page 244).
5. Apply Sheave Friction Correction calculations (page 234) to tension at the surface.This correction are only made if specified on the Torque Drag Setup dialog.
Drag Chart Analysis
Drag Chart Analysis performs essentially the same analysis steps as performed in the Normal Analysis.However,in a Drag Chart analysis, you can specify a range of bit depths.(A Normal Analysis is performed at a single bit depth.)For each bit depth in the Drag Chart Analysis, the largest torque or measured weight occurring anywhere in the work string is recorded. This information is then available in graphical output. The following is a brief overview of the calculations.
1. Begin with the first bit depth. The first step is to initialize all load cases with the loads at the bit, including torques and axial force. These parameters are input on the Run Parameters Data dialog.
2. Next, the work string is broken into the minimum of 30 feet, or the component length. This is the segment that will be analyzed. After the analysis of a segment is complete, the segment above it will be analyzed. This procedure is repeated until the entire string has been analyzed.
a) Interpolate survey at start and end of segment. Calculate build, turn rates, and dogleg severity. The minimum curvature method is used for all survey calculations. If the surveys had tortuosity applied,the“tortured”surveys are used.
b) Determine the well bore at this depth, and apply Pipe Wall Thickness Modification Due to Pipe Class calculations (page 233).
c) Compute the weight per foot of the segment in fluid and at the well bore angle using the Buoyed Weight calculations (page 221). Because the work string is lying in a well bore surrounded by fluids, there are resultant hydrostatic pressures acting on all interior and exterior surfaces of the pipe. The Buoyed Weight calculations determine the resultant weight of the segment considering the hydrostatic pressures acting on it.
d) Determine the force required to buckle the segment in the well bore using the Critical Buckling Force calculations (page 222).The critical buckling force is the axial force required to be exerted on a work string to initiate buckling. Buckling first occurs when compressive axial forces exceed a critical buckling force. The axial force computed using the Buoyancy Method is used to compare with the critical buckling force to determine the onset of buckling.
e) Calculate the normal (side) force using the Side Force calculations for the Soft String Model (page 235), or for the Stiff String Model (page 237).The side force or normal force is a
Measurement of the force exerted by the well bore onto the work string.
f) Calculate the drag acting on the segment using the Drag Force calculations (page 226).The magnitude of the drag force is governed by the selection of Friction Factor (page 232).
g) Determine the axial forces acting on the segment using the Axial Force calculations (page 218).Axial forces act along the axis of the work string.
h) If buckling occurs, determine the additional side force due to buckling by using the Additional Side Force calculations (page 217).
i) Calculate string torque using the Torque calculations (page 244).
3. Apply Sheave Friction Correction calculations (page 234) to tension at the surface. This correction is only made if specified on the Torque Drag Setup dialog.
4. Determine the measured weight at the surface, and the maximum torque at any point in the work string with the bit at the specified depth. Repeat the calculations with the next bit depth.
Top down Analysis
Top Down Analysis allows the specification of string forces from the surface. You can use this mode to determine down whole forces acting on the work string when you know the surface forces. This analysis mode is in many ways the opposite of the Normal Analysis. A Normal Analysis calculates the forces at the surface based on known forces acting at the bit. You may want to use this analysis mode to analyze coiled tubing operations. In the case of coiled tubing, you are driving tubing into the hole with known injector forces at the surface. This analysis mode provides a means of determining the tension or compression forces acting on the tubing downhole.You can specify a tension (positive) or compressive (negative) injector force at the surface. You can also use this analysis mode to analyze stuck pipe situations. When a pipe is stuck downhole,you know the forces at the surface, but the downhole loads must be estimated. You may want to know the required surface forces to achieve a specific force to trip a jar. You may want to apply a tension or torque at the surface, and from the resulting pipe stretch or twist, you can calculate the stuck point.
1. The first step is to initialize with the loads at the surface, including torques and axial force. These parameter are input on the Top Down Analysis Mode Data dialog.
2. Next, the work string is broken into the minimum of 30 feet, or the component length. This is the segment that will be analyzed. After the analysis of a segment is complete, the segment below it will be analyzed. This procedure is repeated until the entire string has been analyzed (from the surface down the string).
a) Interpolate survey at start and end of segment. Calculate build and turn rates, and the dogleg severity. The minimum curvature method is used for all survey calculations. If the surveys had tortuosity applied,the“tortured”surveys are used.
b) Determine the well bore at this depth, and apply Pipe Wall Thickness Modification Due to Pipe Class calculations (page 233).
c) Compute the weight per foot of the segment in fluid and at the well bore angle using the Buoyed Weight calculations (page 221). Because the work string is lying in a well bore surrounded by fluids, there are resultant hydrostatic pressures acting on all interior and exterior surfaces of the pipe. The Buoyed Weight calculations determine the resultant weight of the segment considering the hydrostatic pressures acting on it.
d) Determine the force required to buckle the segment in the well bore using the Critical Buckling Force calculations (page 222).The critical buckling force is the axial force required to be exerted on a work string to initiate buckling. Buckling first occurs when compressive axial forces exceed a critical buckling force. The axial force computed using the Buoyancy Method is used to compare with the critical buckling force to determine the onset of buckling.
e) Calculate the normal (side) force using the Side Force calculations for the Soft String Model (page 235), or for the Stiff String Model (page 237).The side force or normal force is a
Measurement of the force exerted by the well bore onto the work string.
f) Calculate the drag acting on the segment using the Drag Force calculations (page 226).The magnitude of the drag force is governed by the selection of Friction Factor (page 232).
g) Determine the axial forces acting on the segment using the Axial Force calculations (page 218).Axial forces act along the axis of the work string.
h) If buckling occurs, determine the additional side force due to buckling by using the Additional Side Force calculations (page 217).
i) Calculate string torque using the Torque calculations (page 244). Any input bit torque will be added to the calculated torque.
j) Determine stresses using the Stress calculations (page 239).
K) Perform Fatigue calculations (page 228).
l)Perform Twist calculations(page 246)and Stretch calculations (page 242).
3. Apply Sheave Friction Correction calculations (page 234) to tension at the surface. This correction is only made if specified on the Torque Drag Setup dialog.
4. Compute the pick up and slack off.
5. Calculate maximum weight on bit required to buckle (sinusoidal and helical) the work
String and maximum allowable over pull.




固井工程软件的使用(部分)
哈里伯顿Landmark Graphics Corporation著
疲劳曲线的运用
视图——曲线——疲劳曲线图呈现了弯曲应力或者纵向弯曲应力与疲劳极限的比例关系。

运用图表分析结果
图表是一种非常有用的观察分析结果的表格。表格的结果是通过一种方式进行编制的,它可以让你很快地查找到你需要的信息。
运用负载总和图表
视图——图表——负载总和包括了与作业管柱所有方面有关的信息,并且会很容易的让你开始你的分析。这个图表同时也包括了在一般分析模式数据对话框中详细运行模式的负载一览表。而视图——报表——负载总和包括了相似的信息。对于每一个运行方式,它都会提供这些信息:应力模型指数,纵向弯曲应力模型指数,转盘的扭矩,windup,地面的测重,总伸长和中心点位置。

什么是特殊运行模式负载?
要取得有关单独运行模式的信息,可以通过运用视图——图表——负载数据得到。视图——报表——详细报表包括了类似的信息,在图表上可以查找到有关计算井深,部件类型,钻深,内部压力,外部压力,轴向力,阻力,扭矩,扭曲,伸长,正弦纵向弯曲应力,螺旋纵向弯曲应力,纵向弯曲应力特征和应力模型特征。

什么是特殊运行模式应力?
运用视图——图表——应力数据和选择一个运行模式。这个图表包括了与作业管柱所有方面有关的信息。每个运行模式的数据在一个单独的图表中得到详细的说明。而且这个图表包括的信息与视图——图表——应力曲线图中的信息相似,它包括:计算井深,部件类型,钻深,环向应力,径向应力,扭转应力,剪切应力,轴向应力,纵向弯曲应力,弯曲应力, BSMF, 冯米泽斯应力,冯米泽斯应力系数和疲劳系数。

运用报表分析结果
报表是另外一种描述一般分析结果的形式。但是如果你要分析几种运行模式,运用绘图或图表是一种简单的查看结果的方法。
运用详细报表    
大部分在视图——报表——详细报表中描述的信息也可以在图表或者图表中图示的表格中得到。但是,在详细报表中也包括分析时的运行参数和案例数据(在报表选项对话框中详细描述的),绘图和图表中则没有包括这些信息。
但你为了几种运行模式而生成一张报表时,一种运行模式报表的信息将与其它的运行模式报表的信息分离,例如,所有下钻时分析的数据与起钻时分析的数据将分开存储。这是因为在详细报表中已经描述了大量的数据,因此建议每次报表限制在一种或者两种模式的分析。否则就需要很多的时间去读懂报表。
分析模式的方法    
在下面的四个部分中,每一部分包含了可以在扭矩阻力模块中得到的分析方式。而在每一个部分,将讨论分析方式中的主要分析步骤。并且在分析步骤之中也许会涉及到计算。为了辨认,计算方法的名称则会用斜体字标注。而许多的计算方法适用于多个分析方式。同时为了避免复制信息,计算方法将在名为补充信息和计算部分按照字母的顺序进行描述。如果你需要更多关于特殊计算的信息,请参考第217页的“补充信息和计算”。
确定井筒在某一个深度,并且在下面的四个部分中,每一部分包含了可以在扭矩阻力模块中得到的分析方式。而在每一个部分,将讨论分析方式中的主要分析步骤。并且在分析步骤之中也许会涉及到计算。为了辨认,计算方法的名称则会用斜体字标注。而许多的计算方法适用于多个分析方式。同时为了避免复制信息,计算方法将在名为补充信息和计算部分按照字母的顺序进行描述。如果你需要更多关于特殊计算的信息,请参考第217页的“补充信息和计算”。
一般分析
在一般分析中,计算方法在一个钻深,一个三维井筒的作业管柱中得到执行,如果改变这些项中的任何一项 (不同的钻深、不同的作业管柱,不同的泥浆重量等等)那么必须重新运行一般分析。
一般分析可以研究六个装载的数据组或运行的条件。 这六个装载的数据组包括起钻,下钻,地面的转动,井底的转动,滑移和划眼。分析过程是按照以下步骤执行。
第一步:通过钻头的负载初始化所有情况下的负载,包括扭矩和轴向力。这些变量输入到一般分析方式数据对话框。 在一般分析中,必须输入钻头上的负载,因此也可以计算表面负载。
第二步:对于柔性和刚性的管柱模型,工作管柱被迫下入至少30英尺或与组分长度的深度中。就要分析这一段管柱。在对段完整分析之后,就分析上面的段。这个过程被重复,直到分析了整个管柱。
对于每一段,按下面步骤执行:
运用输入在测量编辑中的数据,在下放某一段的开始和结束时插入测量的数据(在案例菜单中)。用以计算造斜率、方位偏转率和狗腿强度。所有的测量计算使用的是最小值曲率方法。如果测量中管柱发生弯曲,则应该使用“弯曲”测量。
确定井筒在某一个深度,并且根据根据套管级别的套管壁厚修正法修正套管的壁厚(第233页)。
使用钻铤减浮重量法(第221页),计算在流体和在井筒角度每一段下端的重量。
由于工作管柱下放在流体围绕的井筒中,总静液柱压力将作用在套管的所有内表面和外表面上。而钻铤减浮重量法正是考虑静液柱压力作用在某段上而确定合力的。
使用临界纵向弯曲压力法(第222页)可以确定井筒的某一段弯曲时需要的力。临界纵向弯曲压力是一种施加在工作管柱上引起管柱弯曲需要的轴向力。当压缩轴向力大于临界纵向弯曲压力时该段开始弯曲。使用浮力法(轴向力法,第218页)计算出的轴向力经常与纵向弯曲压力相比以确定起始的纵向弯曲压力。这是因为临界纵向弯曲压力法是基于静液柱压力的同样假设。
使用应用于塑性管柱模型(第237页)的侧向力法计算一般(侧向)压力。 侧向力或正向力是一种表征井筒施加在工作管柱的力。
计算施加在段上的阻力使用阻力法(第226页)。阻力的大小与摩擦因子的选择有关。
使用轴向力法确定作用在某段上的轴向力 (第218页)。轴向力沿的工作管柱的轴作用。
对于每一段,按下面步骤执行:
运用输入在测量编辑中的数据,在下放某一段的开始和结束时插入测量的数据(在案例菜单中)。用以计算造斜率、方位偏转率和狗腿强度。所有的测量计算使用的是最小值曲率方法。如果测量中管柱发生弯曲,则应该使用“弯曲”测量。
确定井筒在某一个深度,并且根据根据套管级别的套管壁厚修正法修正套管的壁厚(第233页)。
使用钻铤减浮重量法(第221页),计算在流体和在井筒角度每一段下端的重量。
由于工作管柱下放在流体围绕的井筒中,总静液柱压力将作用在套管的所有内表面和外表面上。而钻铤减浮重量法正是考虑静液柱压力作用在某段上而确定合力的。
使用临界纵向弯曲压力法(第222页)可以确定井筒的某一段弯曲时需要的力。临界纵向弯曲压力是一种施加在工作管柱上引起管柱弯曲需要的轴向力。当压缩轴向力大于临界纵向弯曲压力时该段开始弯曲。使用浮力法(轴向力法,第218页)计算出的轴向力经常与纵向弯曲压力相比以确定起始的纵向弯曲压力。这是因为临界纵向弯曲压力法是基于静液柱压力的同样假设。
使用应用于塑性管柱模型(第237页)的侧向力法计算一般(侧向)压力。 侧向力或正向力是一种表征井筒施加在工作管柱的力。
计算施加在段上的阻力使用阻力法(第226页)。阻力的大小与摩擦因子的选择有关。
使用轴向力法确定作用在某段上的轴向力 (第218页)。轴向力沿的工作管柱的轴作用。
如果发生弯曲,使用附加侧向力法确定由于弯曲产生的额外的侧向力 (第217页)。
使用扭矩法(第244页)计算管柱的扭矩。所有输入的钻头扭矩将增加到理论的扭矩中。
使用应力法(第239页),确定应力。
使用疲劳法(第228页)。
使用扭曲法(第246页)并且伸长法(第242页)。
使用滑轮摩擦修正法确定表面的张力 (第234页)。这个修正只有在扭矩阻力设置对话框中被指定时执行。
计算加速和减慢时的起下钻负载事例。
计算使工作管柱弯曲(正弦和螺旋)时作用在钻头上的最大负载和最大容许超载提升负载。
校准摩擦分析
校准摩擦分析计算钻进时使用收集的实际(矿场)数据沿井筒的摩擦系数。这提供了不同形式的校准节目模型手段反对实际领域结果。下列是简要的执行步骤。
工作管柱下入到至少30英尺或者组分长度时。就要分析这一段管柱。在对这一段完整分析了之后,再分析在它之上的段。重复执行这个过程,直到分析了整个管柱。
在下入某一段的开始和结束时插入测量的数据。用以计算造斜率、偏转速率和狗腿严重度。最小曲率法为所有测量法使用。如果测量中管柱出现弯曲(第244页),使用“弯曲”测量。
确定在这一深度的井筒和使用根据套管等级确定套管壁厚的修正法(第233页)。
使用钻铤减浮重量法(第221页)计算在流体和在井筒角度情况下每一段的重量。由于工作管柱下放在流体围绕的井筒中,总静液柱压力将作用在套管的所有内表面和外表面上。而钻铤减浮重量法正是考虑静液柱压力作用在某段上而确定合力的。
在下套管的井段,裸眼井段或者两个情况都存在的井段中估计摩擦系数。对于其中每一种负载情况,执行以下步骤(第1步至第5步)直到理论的扭矩和大钩负载与输入或矿场值。如果值不相等,估计另一个摩擦系数,并且再次执行以下步骤。
使用应用于软模(第235页)的侧向力法计算一般(侧向)压力。 侧向力或正向力是一种表征井筒施加在工作管柱的力。
使用阻力法计算作用在某段上的阻力 (第226页)。阻力的大小与摩擦因子的选择有关。
使用轴向力法确定作用在某段上的轴向力 (第218页)。轴向力沿的工作管柱的轴作用。
使用扭矩法(第244页),计算管柱的扭矩。
使用滑轮摩擦修正法确定表面的张力 (第234页)。这个修正只有在扭矩阻力设置窗口中指定时执行。
阻力曲线图分析
阻力曲线图分析在本质上和一般分析的步骤一样。然而,在阻力曲线图分析中,你能够指定不同范围的钻深。(一般分析只在单一的钻深中执行。)对于在阻力曲线图分析中的每一个钻深,发生在工作管柱任何地方的最大扭矩或测重都会被记录。这一个信息是然后可以在图形输出中得到。下列是简要的执行步骤。
从第一个钻深开始。第一步是通过钻头的负载初始化所有情况下的负载,包括扭矩和轴向力。这些参数被输入在运行参数数据对话框中。
其次,工作管柱下入到至少30英尺或者组分长度时。就要分析这一段管柱。在对这一段完整分析了之后,再分析在它之上的段。重复执行这个过程,直到分析了整个管柱。
在下放某一段的开始和结束时插入测量的数据。用以计算造斜率、偏转速率和狗腿严重度。最小曲率法为所有测量法使用。如果测量中出现弯曲(第244页),使用“弯曲”测量。
确定在这一深度的井筒和使用根据套管等级确定套管壁厚的修正法(第233页)。
使用钻铤减浮重量法(第221页)计算在流体和在井筒角度情况下每一段的重量。由于工作管柱下放在流体围绕的井筒中,总静液柱压力将作用在套管的所有内表面和外表面上。而钻铤减浮重量法正是考虑静液柱压力作用在某段上而确定合力的。
使用临界纵向弯曲压力法(第222页)可以确定井筒的某一段弯曲时需要的力。临界纵向弯曲压力是一种施加在工作管柱上引起管柱弯曲需要的轴向力。当压缩轴向力大于临界纵向弯曲压力时该段开始弯曲。使用浮力法计算出的轴向力经常与纵向弯曲压力相比以确定起始的纵向弯曲压力。这是因为临界纵向弯曲压力法是基于静液柱压力的同样假设。
使用应用于塑性管柱模型(第235页)的侧向力法计算一般(侧向)压力,或者刚性管柱模型(第237页)。侧向力或正向力是一种表征井筒施加在工作管柱的力。
计算施加在段上的阻力使用阻力法(第226页)。阻力的大小与摩擦因子的选择有关。
使用轴向力法确定作用在某段上的轴向力 (第218页)。轴向力沿的工作管柱的轴作用。
如果发生弯曲,使用附加侧向力法确定由于弯曲产生的额外的侧向力 (第217页)。
使用扭矩法(第244页)计算管柱的扭矩。
使用滑轮摩擦修正法确定表面的张力 (第234页)。这个修正只有在扭矩阻力设置对话框中被指定时执行。
确定在地面时的测重,和当钻头钻至设计井深时在工作管柱任意一点上的最大扭矩。使用下一个钻深重复执行计算。
自上而下分析
自上而下分析允许地面管柱受力的规格。当你知道地面的受力时,就可以使用这个模型确定井底作用在工作管柱上的受力。这个分析模型在许多方面与一般分析是对立的。一般分析计算是根据已知作用在钻头上的力计算地面的受力。你可以使用这个分析模型去分析连续油管操作。在使用连续油管的情况下,你会在地面注入井的压力已知时把油管下入到井中。这种分析模型提供了一种确定作用井底油管上拉力或者压力的方法。你可以规定拉力(正面)或者地面注水时的压力(反面)。你也可以使用这个分析方式分析管柱卡住时的情况。当管柱在井底卡住时,你可以知道地面上的力,但必须估计井底的负载。你可以知道用一个特定的力起下一个震击器时地面需要的力。你可以运用在地面产生的拉力,扭矩,和管柱伸长或者弯曲时产生的拉力,扭矩。你可以计算卡点的位置。
第一步是初始化地面的负载,包括扭矩和轴向力。这些参数将被输入到自上而下分析模型数据对话框中。
其次,工作管柱下入到至少30英尺或者组分长度时。就要分析这一段管柱。在对这一段进行了完整地分析之后,再分析在它之上的段。重复执行这个过程,直到分析了整个管柱。
在下放某一段的开始和结束时插入测量的数据。用以计算造斜率、偏转速率和狗腿严重度。而最小曲率法适用于所有的测量。但如果测量中管柱发生弯曲,应该使用“弯曲”测量法。
确定在这一深度的井筒和使用根据套管等级确定套管壁厚的修正法(第233页)。
使用钻铤减浮重量法(第221页)计算在流体和井筒角度情况下每一段的重量。由于工作管柱下放在流体围绕的井筒中,总静液柱压力将作用在套管的所有内表面和外表面上。而钻铤减浮重量法正是考虑静液柱压力作用在某一段上而确定合力的。
使用临界纵向弯曲压力法(第222页)可以确定井筒的某一段在弯曲时需要的力。临界纵向弯曲压力是一种施加在工作管柱上而引起管柱弯曲时需要的轴向力。当压缩轴向力大于临界纵向弯曲压力时该段发生弯曲。使用浮力法计算出的轴向力经常与纵向弯曲压力相比较以确定起始的纵向弯曲压力。
使用应用于塑性管柱模型(第235页) , 或者刚性管柱模型(第237页)的侧向力法计算一般(侧向)压力。侧向力或正向力是一种表征井筒施加在工作管柱的力。
使用阻力法(计算施加在某一段上的阻力第226页)。阻力的大小与摩擦因子的选择有关(第232页)。
使用轴向力法确定作用在某一段上的轴向力 (第218页)。轴向力沿着工作管柱的轴进行作用。
如果管柱发生弯曲,使用附加侧向力法确定由于弯曲而产生的额外侧向力 (第217页)。
使用扭矩法(第244页)计算管柱的扭矩。所有输入的钻头扭矩值将增加到理论的扭矩中。
使用应力法(第239页)确定应力。
使用疲劳法(第228页)。
使用扭曲法(第246页)和伸长法(第242页)。
使用滑轮摩擦修正法确定地面的拉力 (第234页)。这个修正只有在扭矩阻力设置对话框中被指定时使用。
计算加速和减慢时的起下钻负载事例。
计算使工作管柱弯曲(正弦曲线形和螺旋状形)时作用在钻头上的最大负载和最大容许超载提升负载。


论文里有很多图片,在附件里看
附件: 翻译原文.rar (267 K) 下载次数:18 ,你所在用户组没有附件下载权限 VIP会员免积分下载
附件: 翻译中文.rar (262 K) 下载次数:20 ,你所在用户组没有附件下载权限 VIP会员免积分下载
1条评分
youyuwangzi 财富 +50 有效资源 2009-05-11
评价一下你浏览此帖子的感受

精彩

感动

搞笑

开心

愤怒

无聊

灌水
!@!向前走!@!
离线ali123456
发帖
3008
财富
1466
威望
20
交易币
0
只看该作者 1楼 发表于: 2009-05-19 | 石油求职招聘就上: 阿果石油英才网
想下载下来看看,是否有错误
www.cnblogs.com/315358525
离线jd-lyh
发帖
18
财富
196
威望
1
交易币
0
只看该作者 2楼 发表于: 2009-09-01 | 石油求职招聘就上: 阿果石油英才网
  
离线牧野雄鹰
发帖
65
财富
79
威望
10
交易币
0
只看该作者 3楼 发表于: 2009-09-07 | 石油求职招聘就上: 阿果石油英才网
这个,阅读起来确实有难度
离线扭纹柴
发帖
437
财富
31
威望
5
交易币
0
只看该作者 4楼 发表于: 2009-09-12 | 石油求职招聘就上: 阿果石油英才网
这不是固井工程软件哦!

这段文字说的是Wellplan里的Torque/Drag的功能,可以分析钻进和下套管时的摩阻和扭距。 不过Wellplan里也带一个固井模块Opticem。
累得连胡思乱想的时间和精力都没有了!
离线扭纹柴
发帖
437
财富
31
威望
5
交易币
0
只看该作者 5楼 发表于: 2009-09-12 | 石油求职招聘就上: 阿果石油英才网
译者估计对专业和软件的背景知识不熟哦,很多问题哦

别的不说了,就说
“Top Down Analysis allows the specification of string forces from the surface

自上而下分析允许地面管柱受力的规格。”

Top Down Analysis 是相对于Normal Analysis而言的。Normal Analysis给定的初始计算条件是井底钻头处的钻压值和扭距值,然后由下向上计算整个管柱不同深度的受力。而Top Down正好是反向的,给定地面的大钩负荷和转盘扭距,由上而下的计算整个管柱不同深度的受力。
也就是说上一句话应该翻译为:
Top Down Analysis 允许从地面开始分析整个管柱受力细节。
1条评分
spearshield 财富 +25 Rewards for discussing! 2009-09-12
累得连胡思乱想的时间和精力都没有了!
离线swplqg
发帖
955
财富
18
威望
6
交易币
0
只看该作者 6楼 发表于: 2010-12-15 | 石油求职招聘就上: 阿果石油英才网
遇到固井问题了,谢谢分享!
离线amyolanda
发帖
52
财富
23
威望
4
交易币
0
只看该作者 7楼 发表于: 2013-09-16 | 石油求职招聘就上: 阿果石油英才网
学习了。。。。。

网站事务咨询:QQ:1392013 | 26189883
阿果石油网为免费个人网站,为石油人提供免费的在线即时技术交流场所,拒绝任何人以任何形式在本论坛发表与中华人民共和国法律相抵触的言论和行为!
如有言论或会员共享的资料涉及到您的权益,请立即通知网站管理员,本站将在第一时间给予配合处理,谢谢!