切换到宽版
  • 2062阅读
  • 0回复

From Oil-Prone Source Rock to Gas-Producing Shale Reservoir – Geologic [复制链接]

上一主题 下一主题
离线macon.cn
 
发帖
468
财富
8610
威望
349
交易币
0
只看楼主 倒序阅读 使用道具 0楼 发表于: 2013-06-14 | 石油求职招聘就上: 阿果石油英才网
From Oil-Prone Source Rock to Gas-Producing Shale Reservoir – Geologic and Petrophysical Characterization of Unconventional Shale-Gas Reservoirs
Many currently producing shale-gas reservoirs are overmature oil-prone source rocks. Through burial and heating these reservoirs
evolve from organic-matter-rich mud deposited in marine, lacustrine, or swamp environments. Key characterization parameters
are: total organic carbon (TOC), maturity level (vitrinite reflectance), mineralogy, thickness, and organic matter type. Hydrogento-
carbon (HI) and oxygen-to-carbon (OI) ratios are used to classify organic matter that ranges from oil-prone algal and
herbaceous to gas-prone woody/coaly material.
Although organic-matter-rich intervals can be hundreds of meters thick, vertical variability in TOC is high (<1-3 meters) and is
controlled by stratigraphic and biotic factors. In general, the fundamental geologic building block of shale-gas reservoirs is the
parasequence, and commonly 10’s to 100’s of parasequences comprise the organic-rich formation whose lateral continuity can be
estimated using techniques and models developed for source rocks.
Typical analysis techniques for shale-gas reservoir rocks include: TOC, X-ray diffraction, adsorbed/canister gas, vitrinite
reflectance, detailed core and thin-section descriptions, porosity, permeability, fluid saturation, and optical and electron
microscopy. These sample-based results are combined with full well-log suites, including high resolution density and resistivity
logs and borehole images, to fully characterize these formations. Porosity, fluid saturation, and permeability derived from core can
be tied to log response; however, several studies have shown that the results obtained from different core analysis laboratories can
vary significantly, reflecting differences in analytical technique, differences in definitions of fundamental rock and fluid properties,
or the millimeter-scale variability common in mudstones that make it problematic to select multiple samples with identical
attributes.
Porosity determination in shale-gas mudstones is complicated by very small pore sizes and, thus, large surface area (and associated
surface water); moreover, smectitic clays that are commonly present in mud have interlayer water, but this clay family tends to be
minimized in high maturity formations due to illitization. Finally, SEM images of ion-beam-milled samples reveal a separate nanoporosity
system contained within the organic matter, possibly comprising >50% of the total porosity, and these pores may be
hydrocarbon wet, at least during most of the thermal maturation process. A full understanding of the relation of porosity and gas
content will result in development of optimized processes for hydrocarbon recovery in shale-gas reservoirs. Unlock-SPE-131350-MS-P (3).pdf (4138 K) 下载次数:2 ,你所在用户组没有附件下载权限
评价一下你浏览此帖子的感受

精彩

感动

搞笑

开心

愤怒

无聊

灌水
     常居阿果论坛-文献应助帖
http://www.agoil.cn/bbs/read.php?tid-173868-page-e-fpage-1.html#a

网站事务咨询:QQ:1392013 | 26189883
阿果石油网为免费个人网站,为石油人提供免费的在线即时技术交流场所,拒绝任何人以任何形式在本论坛发表与中华人民共和国法律相抵触的言论和行为!
如有言论或会员共享的资料涉及到您的权益,请立即通知网站管理员,本站将在第一时间给予配合处理,谢谢!