切换到宽版
  • 2618阅读
  • 13回复

[公告]现场固井全攻略 [复制链接]

上一主题 下一主题
离线zx8u8
 
发帖
287
财富
849
威望
10
交易币
0
只看楼主 倒序阅读 使用道具 0楼 发表于: 2011-03-05 | 石油求职招聘就上: 阿果石油英才网
《现场固井全攻略》
1.    隔水导管固井程序    
1.1.    推荐程序
1.1.1.    按水泥化验和用水量配置混合水,搅拌待用;
1.1.2.    套管到位后,连接插入头下钻,推荐使用1~3柱5"HWDP加放两个内管扶正器;如果    钻杆串需要配长时最好加在中间,保证上部为整立柱下钻,到最后1根要缓慢下插同时以练钳转动钻杆,确认进入后下压3吨座卡瓦;
1.1.3.    导管内灌满海水,检查密封;循环一周,注意观察导管液面变化;
1.1.4.    确认密封后,接固井管汇,开始注水泥作业;
1.1.5.    固井泵注冲洗海水XX m3;    注水泥浆    XX    m3;比重1.85~1.94sg;如果入泥超过60 m,要求使用领、尾浆。
1.1.6.    固井泵替尾水XX m3,检查回流;若单流阀失效,则替至最后一根钻杆,视情况蹩压WOC 30~60min;
1.1.7.    钻台提出插入头,确认液面正常后起钻;
1.1.8.    POOH一柱后,清洗固井管线和钻杆。
1.2.    技术要点
1.2.1.    确定合理的附加量,防止压漏、压空;
1.2.2.    内管扶正器加放科学,异径管串要求使用扶正器定位箍;
1.2.3.    确认下插成功和密封;
1.2.4.    使用海水早强剂水泥浆,根据作业者习惯控制稠化时间在60~180min,要求四~六小时强度不低于500psi;
1.2.5.    对于预测有浅层气的井,要求在导管鞋顶留2~3m的水泥塞。
1.3.    疑难答疑
1.3.1.    内管串插不进去?
A)    内管扶正器距离插入头太远;
B)    井口与导管相对不正;
C)    导管内有异物;
D)    插入头尺寸不对。
1.3.2.    导管灌不满?
A)    内管没插入浮鞋;
B)    插入头密封圈失效;
C)    导管串某处密封圈失缺。
1.3.3.    提出内管串时,导管内液面下降?
A)    注水泥时发生漏失;
B)    水泥浆附加量太小,返高不够高;
C)    导管串贴边,内外连通。
1.3.4.    提出内管串时,导管内向外泛水?
A)    内管内水泥浆回落;
B)    浮鞋单流阀失效。

2.    表层内管固井程序    
2.1.    推荐程序
2.1.1.    按水泥化验和用水量配置混合水,搅拌待用,搬土要求预水化不低于4hr;
2.1.2.    套管到位后,连接插入头下钻,推荐使用3柱5"HWDP加放两个内管扶正器;如果钻杆串需要配长时最好加在中间,保证上部为整立柱下钻,到最后1根要缓慢下插同时以练钳转动钻杆,确认进入后下压3~5吨座卡瓦;
2.1.3.    套管内灌满海水,检查密封;循环一周,注意观察套管液面变化;
2.1.4.    确认密封后,接固井管汇,开始注水泥作业;
2.1.5.    固井泵注冲洗液XX m3;    
2.1.6.    注水泥浆:领浆XX    m3;比重1.58sg,要求使用搬土浆;
          尾浆XX    m3;比重1.80~1.90sg;
2.1.7.    固井泵替尾水XX m3,检查回流;若单流阀失效,则替至最后一根钻杆,视情况蹩压WOC 30~60min;
2.1.8.    钻台提出插入头,确认液面正常后起钻;
2.1.9.    POOH一柱后,清洗固井管线和钻杆。
2.2.    技术要点
2.2.1.    确定合理的附加量,如要求必须封固到井口,可直接注领浆到混浆返出;
2.2.2.    套管扶正器加放,底部五根管串和上部套管重叠段三根要求1ea/1jts,以保证居中;最好井口附近使用一个刚性扶正器;
2.2.3.    确认下插成功和密封;
2.2.4.    为确保地漏实验成功,作业时要考虑套管居中、井底干净和套管鞋地层的因素,同时可以适当提高套管鞋处的水泥浆比重;
2.2.5.    根据不同的井身结构,表层内管的下深一般都小于500m,故仍使用海水早强剂水泥浆(但领浆要求使用搬土防漏),根据作业者习惯控制稠化时间在120~210min,要求六~八小时强度不低于500psi;
2.2.6.    对于预测有浅层气的井,要求在水泥浆浆柱结构上,在浅气层以上设计50~100 m的盖浆;
2.2.7.    如用小油管清洗泥挂,则在冲洗液、低比重领浆和稠化时间上要给予考虑。
2.3.    疑难答疑
2.3.1.    内管串插不进去?
A)    内管扶正器距离插入头太远;
B)    井口与导管相对不正;
C)    导管内有异物;
D)    插入头尺寸不对。
2.3.2.    导管灌不满?
A)    内管没插入浮鞋;
B)    插入头密封圈失效;
2.3.3.    提出内管串时,导管内液面下降?
A)    注水泥时发生漏失;
B)    水泥浆附加量太小,返高不够高;
2.3.4.    提出内管串时,导管内向外泛水?
A)    内管内水泥浆回落;
B)    浮鞋单流阀失效。
2.3.5.    注水泥时发生明显漏失?
A)    设计水泥浆量不变;
B)    若时间允许,要降低混注排量,甚至在注领浆中途可暂停作业15~30 min。
3.    表层单级固井程序    
3.1.    推荐程序
4.1.1.    按水泥化验和用水量配置混合水,搅拌待用,搬土要求预水化不低于4hr;注意保证泥浆池干净和淡水水质(CLˉ<500PPM);
4.1.2.    套管到位后,灌满排空,连接水泥头及固井管线,低泵冲打通,正常后(15~20min)分阶段提高泵速,    同时记录泵压、返出;循环量不少于一周,原则要求振动筛干净,气全量小于1%;
4.1.3.    通水试压3000psi*5min,确认后开始注水泥作业;
4.1.4.    固井泵注冲洗液XX m3;    建议使用冲洗剂;
4.1.5.    (投底胶塞;)
4.1.6.    注水泥浆:领浆XX    m3;比重1.58sg,要求使用搬土浆;
          尾浆XX    m3;比重1.80~1.90sg;
4.1.7.    投顶胶塞,尽量确认胶塞下行;
4.1.8.    固井泵替尾水XX m3;
4.1.9.    替泥浆XX m3,高泵速替至内外平衡,慢替到碰压;
4.1.10.    按要求数据碰压,稳压10min检查回流;若单流阀失效,则替回(有碰压显示即可)视情况蹩压WOC 60~120min;
3.2.    技术要点
3.2.1.    确定合理的附加量,如要求必须封固到井口,注领浆亦可分高低;
3.2.2.    套管扶正器加放,底部五根管串和上部套管重叠段三根要求1ea/1jts,以保证居中;最好井口附近使用一个刚性扶正器;
3.2.3.    保证套管内灌泥浆干净(通过沉砂池);如果使用自动灌浆的附件,在距离井底100~200m时务必循环破坏该装置,严防沉砂进入套管内;
3.2.4.    套管到位后,小排量打通正常(控制泵压小于20KSC),严禁直接到设计循环泵排量;
3.2.5.    为确保地漏实验成功,作业时要考虑套管居中、井底干净和套管鞋地层的因素,同时可以适当提高套管鞋处的水泥浆比重;
3.2.6.    根据不同的井身结构,表层单级固井的套管下深一般在400~1200m之间,原则上在700m(井底BHST大于100℉/38℃)之后就不再使用海水早强剂水泥浆,但根据作业者习惯往往领浆又要求使用早强剂搬土浆防漏,所以此时一定要注意搬土浆和泥浆的相容性,防止局部增稠而发生蹩漏和泥挂难以清洗;稠化时间依作业时间而行;
3.2.7.    对于预测有浅层气的井,要求在水泥浆浆柱结构上,在浅气层以上设计50~100 m的盖浆
3.2.8.    如用小油管清洗泥挂,则在冲洗液、低比重领浆和稠化时间上要给予考虑。
3.3.    疑难答疑
3.3.1.    套管到位后开不开泵?
A)    套管串内进入沙子泥块等;
B)    单流阀(自动灌浆)被卡死;
C)    泥浆太脏。
3.3.2.    循环时蹩泵、蹩漏?
A)    循环排量太大;
B)    开泵或泵速提升太快。
3.3.3.    注水泥时发生明显漏失?
C)    设计水泥浆量不变;
D)    塞流替泥浆,若时间允许,控制到最慢。
4.    技套//油层单级固井程序    
4.1.    推荐程序
4.1.1.    下套管前原钻具通井,要求井眼无阻卡、无沉砂;之后,同时处理泥浆,使泥浆性能尽可能趋向“三低一高”的原则;
4.1.2.    按水泥化验和用水量配置混合水,搅拌待用;注意保证泥浆池及相关管线、闸门干净密封无串漏,对非渗透体系要求品尝淡水水质(CLˉ<500PPM);
4.1.3.    套管到位后,灌满排空,连接水泥头及固井管线,低泵冲打通,正常后(15~20min)分阶段提高泵速,    同时记录泵压(控制最高泵压小于8~10  Mpa)、返出、做泵效试验;循环量不少于二周,要求振动筛干净,井眼内无沉砂,原则要求气全量小于1%;
4.1.4.    通水试压3000psi*5min,确认后开始注水泥作业;
4.1.5.    固井泵注冲洗液XX m3;    建议使用冲洗剂;
4.1.6.    (投底胶塞;)
4.1.7.    注水泥浆:领浆XX    m3;比重1.58~1.75sg;
          尾浆XX    m3;比重1.80~1.90sg;
4.1.8.    投顶胶塞,尽量确认胶塞下行;
4.1.9.    固井泵替尾水XX m3;
4.1.10.    替泥浆XX m3,高泵速替至尾浆出鞋到内外平衡前某一适当时刻,然后慢替到碰压;
4.1.11.    按要求数据碰压,稳压10min检查回流;若单流阀失效,则替回(有碰压显示即可)视情况蹩压WOC 60~120min;
4.2.    技术要点
4.2.1.    确定合理的附加量,根据封固要求,注领浆可有2~3段比重不同;
4.2.2.    根据不同的井身结构,在井底BHST大于230℉/110℃后,使用35%的硅粉水泥以防止水泥石强度衰退,但在探井不保留井口的情况下可以适当放宽;稠化时间依作业时间而行,一般要求在四小时左右;
4.2.3.    合理套管扶正器加放以保证居中,底部五根管串要求1ea/1jts,其它井段1ea/2~3jts(生产井遵循2ea/3jts的总原则),但在隔层或油水同层段必须保证1ea/1jts;最好井口附近使用一个刚性扶正器;
4.2.4.    保证套管内灌泥浆干净(通过沉砂池);如果使用自动灌浆的附件,在距离井底100~200m时务必循环破坏该装置,严防沉砂进入套管内;
4.2.5.    套管到位后,小排量打通正常(控制泵压小于20KSC),严禁直接到设计循环泵排量;第一周要求排量比设计的正常循环排量要低,待井底返出后再提高到大排量循环,防止蹩漏;
4.2.6.    在技术套管中,为确保地漏实验成功,作业时要考虑套管居中、井底干净和套管鞋地层的因素,同时可以适当提高套管鞋处的水泥浆比重;
4.2.7.    油层套管固井前,要求必须调整泥浆性能,在保证井眼安全的前提下,主要降低黏度、切力,为提高顶替效率和界面胶结创造最好的条件;
4.2.8.    油层固井要利用相关软件对油气层、压力异常层进行动态压力计算,确保在施工过程中的全程压力变化满足特定的要求;
4.2.9.    对于电测显示有气帽或油帽的井,要求在水泥浆浆柱结构上,在其以上设计50~100 m的盖浆(比重比常规领浆适当提高);
4.2.10.    电测第一趟后校核井底温度, 油层按85~75%,但还要根据不同的实际井况进行调整,避免千篇一律;
4.2.11.    根据现场的实际情况确定顶替技术,在能够保证清洗效果的前提下,尽可能采用低返速顶替,减少作用在薄弱油层或断层上的循环压力;
4.2.12.    在注替过程中,要求钻台和气测自始至终监视泵压和井口返出情况;
4.2.13.    对于油气比较活跃的井,要求在注替全程的动态当量比重不小于地层的孔隙压力,套管内要蹩压候凝;
4.2.14.    对于浅井,为提高顶替效率,在注替量小于套管内容的前提下,推荐把底胶塞投在冲洗液前边;
4.2.15.    对于初探井,最大顶替排量原则要求不大于钻进时最大返速(BHA处)的1.2倍;在已有作业经验的基础上才可突破这一界限;
4.2.16.    对于井况相对复杂的作业,施工前应充分考虑可能出现的不正常情况,力戒无的放失、乱中出乱。
4.3.    疑难答疑
4.3.1.    套管到位后开不开泵?
A)    套管串内进入沙子泥块等;
B)    单流阀(自动灌浆)被卡死;
C)    泥浆太脏;
D)    井深,温度高,泥浆胶凝强度大。
4.3.2.    循环时蹩泵、蹩漏?
A)    循环排量太大;
B)    开泵或泵速提升太快;
C)    泥浆中岩屑、沙子含量高。
4.3.3.    循环时发生明显漏失?
A)    采用小粒径堵漏材料堵漏;
B)    逐渐循环提升泵速到设计循环排量,避免草率固井;
C)    重新调整固井设计。
4.3.4.    注水泥时发生明显漏失?
A)    设计水泥浆量不变;
B)    塞流替泥浆,若时间允许,控制到最慢。

5.    技套//油层单级双封固井程序    
5.1.    推荐程序
5.1.1.    下套管前原钻具通井,要求井眼无阻卡、无沉砂;之后,同时处理泥浆,使泥浆性能尽可能趋向“三低一高”的原则;
5.1.2.    按水泥化验和用水量配置混合水,搅拌待用;注意保证泥浆池及相关管线、闸门干净密封无串漏,对非渗透体系要求品尝淡水水质(CLˉ<500PPM);
5.1.3.    套管到位后,灌满排空,连接水泥头及固井管线,低泵冲打通,正常后(15~20min)分阶段提高泵速,    同时记录泵压(控制最高泵压小于8~10  Mpa)、返出、做泵效试验;循环量不少于二周,要求振动筛干净,井眼内无沉砂,原则要求气全量小于1%;
5.1.4.    通水试压3000psi*5min,确认后开始注水泥作业;(推荐在冲洗液前,包括通水量,注人淡水50~100m,稀释泥浆);
5.1.5.    固井泵注冲洗液隔离XX m3;    建议使用冲洗剂;
5.1.6.    投底胶塞;(倒入混合水,清洗固井泵及水柜20BBL,作为第二隔离液泵入井内);
5.1.7.    注前置水泥浆:低比重领浆XX    m3;比重1.50~1.70sg;
                   尾浆XX    m3;比重1.75~1.85sg;
5.1.8.    固井泵注中间液-淡水;(之间含第二冲洗液)
5.1.9.    注后置水泥浆:领浆XX    m3;比重1.65~1.75sg;
              尾浆XX    m3;比重1.85~1.92sg;
5.1.10.    投顶胶塞,尽量确认胶塞下行;同时清洗固井管线;
5.1.11.    固井泵替尾水XX m3;
5.1.12.    替泥浆XX m3,高泵速替至尾浆出鞋到内外平衡前某一适当时刻,然后慢替到碰压;
5.1.13.    按要求数据碰压,稳压10min检查回流;若单流阀失效,则替回(有碰压显示即可)视情况蹩压WOC 60~120min;
5.2.    技术要点
5.2.1.    确定合理的附加量,根据封固要求和地层特性,前置浆的比重和设计数量有时需要做大幅调整;
5.2.2.    根据不同的井身结构,在井底BHST大于230℉/110℃后,使用35%的硅粉水泥以防止水泥石强度衰退,但在探井不保留井口的情况下可以适当放宽;稠化时间依作业时间而行,一般要求在四小时左右;
5.2.3.    合理套管扶正器加放以保证居中,底部五根管串要求1ea/1jts,其它井段1ea/2~3jts(生产井遵循2ea/3jts的总原则),但在隔层或油水同层段必须保证1ea/1jts;
5.2.4.    保证套管内灌泥浆干净(通过沉砂池);如果使用自动灌浆的附件,在距离井底100~200m时务必循环破坏该装置,严防沉砂进入套管内;
5.2.5.    套管到位后,小排量打通正常(控制泵压小于20KSC),严禁直接到设计循环泵排量;第一周或第一个迟到时间内,要求排量比设计的正常循环排量要低,待井底返出后再提高到大排量循环,防止蹩漏;
5.2.6.    油层套管固井前,要求必须调整泥浆性能,在保证井眼安全的前提下,主要降低黏度、切力,为提高顶替效率和界面胶结创造最好的条件;
5.2.7.    油层固井要利用相关软件对油气层、压力异常层进行动态压力计算,确保在施工过程中的全程压力变化满足特定的要求;
5.2.8.    对于电测显示有气帽或油帽的井,要求在水泥浆浆柱结构上,在其以上设计50~100 m的盖浆(比重比常规领浆适当提高);
5.2.9.    电测第一趟后校核井底温度, 油层按85~75%,但还要根据不同的实际井况进行调整,避免千篇一律;
5.2.10.    根据现场的实际情况确定顶替技术,在能够保证清洗效果的前提下,尽可能采用低返速顶替,减少作用在薄弱油层或断层上的循环压力;
5.2.11.    在注替过程中,要求钻台和气测自始至终监视泵压和井口返出情况;
5.2.12.    对于油气比较活跃的井,要求在注替全程的动态当量比重不小于地层的孔隙压力,同时环空内要蹩压候凝;
5.2.13.    对于浅井,为提高顶替效率,在注替量小于套管内容的前提下,推荐把底胶塞投在冲洗液前边;
5.2.14.    对于初探井,最大顶替排量原则要求不大于钻进时最大返速(BHA处)的1.2倍;在已有作业经验的基础上才可突破这一界限;
5.2.15.    对于井况相对复杂的作业,施工前应充分考虑可能出现的不正常情况,力戒无的放失、乱中出乱。
5.2.16.    对于生产井,要把前置水泥浆、中间液和后置水泥浆纳入整体考虑,避免由于前置水泥浆返出或不到位而引起的油藏的当量比重的变化;
5.2.17.    对于生产井,为防止留高水泥塞,在替完井液前,泥浆泵必须提前进行低压循环,以保证上水效率;万一发生到正常设计替量还不碰压的情况,在确认水泥头、相应管线、完井液数量等的综合状况后,原则要求必须继续顶替到碰压状态。
5.3.    疑难答疑
5.3.1.    套管到位后开不开泵?
A)    套管串内进入沙子泥块等;
B)    单流阀(自动灌浆)被卡死;
C)    泥浆太脏;
D)    井深,温度高,泥浆胶凝强度大。
5.3.2.    循环时蹩泵、蹩漏?
A)    循环排量太大;
B)    开泵或泵速提升太快;
C)    泥浆中岩屑、沙子含量高。
5.3.3.    循环时发生明显漏失?
A)    采用小粒径堵漏材料堵漏;
B)    逐渐循环提升泵速到设计循环排量,避免草率固井;
C)    重新调整固井设计。
5.3.4.    注水泥时发生明显漏失?
A)    设计水泥浆量不变;
B)    塞流替泥浆,若时间允许,控制到最慢。

6.        技套//油层双级固井程序    
6.1.    推荐程序
6.1.1.    下套管前原钻具通井,要求井眼无阻卡、无沉砂;之后,同时处理泥浆,使泥浆性能尽可能趋向“三低一高”的原则;
6.1.2.    检查、测绘分级箍的相关内径尺寸和匹配情况,确保关闭塞铝头外径能顺利通过快速接头;根据井况确定液压剪切销钉的数量;
6.1.3.    按水泥化验和用水量配置混合水,搅拌待用;注意保证泥浆池及相关管线、闸门干净密封无串漏,对非渗透体系要求品尝淡水水质(CLˉ<500PPM);
6.1.4.    套管到位后,灌满排空,连接水泥头及固井管线,低泵冲打通,正常后(15~20min)分阶段提高泵速,    同时记录泵压(控制最高泵压小于8~10  Mpa)、返出、做泵效试验;循环量不少于二周,要求振动筛干净,井眼内无沉砂,原则要求气全量小于1%;
6.1.5.    通水试压3000psi*5min,确认后开始注水泥作业;(推荐在冲洗液前,包括通水量,注人淡水50~100m,稀释泥浆);
6.1.6.    固井泵注冲洗液隔离XX m3;    建议使用冲洗剂;
6.1.7.    开盖投一级旁通胶塞;(倒入混合水,清洗固井泵及水柜20BBL,作为第二隔离液泵入井内);
6.1.8.    注一级水泥浆:领浆XX    m3;比重1.65~1.75sg;
              尾浆XX    m3;比重1.85~1.92sg;
6.1.9.    开盖投一级碰压塞;
6.1.10.    固井泵注尾水;
6.1.11.    替泥浆XX m3,高泵速替至尾浆出鞋到内外平衡前某一适当时刻,然后慢替到碰压;注意在一级碰压塞通过液压DV的前后200冲之间,控制排量在6~10bbl,机械DV适当控制泵压即可;
6.1.12.    碰压数值要根据分级箍的类型和打开压力确定,防止碰压时提前打开分级箍;
6.1.13.    放压,确认回流,若单流阀失效,则替回(有碰压显示即可)视情况进行最短时间的蹩压候凝;
6.1.14.    钻台开水泥头顶盖,(投二级开孔弹,)预装二级关闭塞;
6.1.15.    (等待开孔弹下落200ft/min,估计到位后,)加压1000+/-200psi,打开DV;
6.1.16.    大排量循环二周后,间断循环或中等排量循环到一级水泥浆终凝;
6.1.17.    固井泵注二级冲洗隔离液;
6.1.18.    注二级水泥浆:领浆XX    m3;比重1.65~1.75sg;
              尾浆XX    m3;比重1.85~1.92sg;
6.1.19.    投二级关闭塞,尽量确认胶塞下行;
6.1.20.    固井泵替尾水XX m3;
6.1.21.    替泥浆XX m3,高泵速替至尾浆出鞋到内外平衡前某一适当时刻,然后慢替到碰压;
6.1.22.    按要求数据碰压,稳压10min检查回流;若单流阀失效,则替回(有碰压显示即可)视情况蹩压WOC 60~120min;
6.2.    技术要点
6.2.1.    确定合理的附加量,根据封固要求和地层特性,设计两级水泥浆的比重和封固长度;分级箍要求坐在井眼规则的泥岩井段;
6.2.2.    根据不同的井身结构,在井底BHST大于230℉/110℃后,使用35%的硅粉水泥以防止水泥石强度衰退,但在探井不保留井口的情况下可以适当放宽;稠化时间依作业时间而行,一般要求在四小时左右;
6.2.3.    合理套管扶正器加放以保证居中,底部五根管串要求1ea/1jts,其它井段1ea/2~3jts(生产井遵循2ea/3jts的总原则),但在隔层或油水同层段必须保证1ea/1jts;同时,分级箍上下要加放水泥伞和扶正器;
6.2.4.    保证套管内灌泥浆干净(通过沉砂池);如果使用自动灌浆的附件,在距离井底100~200m时务必循环破坏该装置,严防沉砂进入套管内;同时,根据泥浆比重给出套管的最大掏空长度;
6.2.5.    套管到位后,小排量打通正常(控制泵压小于20KSC),严禁直接到设计循环泵排量;第一周或第一个迟到时间内,要求排量比设计的正常循环排量要低,待井底返出后再提高到大排量循环,防止蹩漏;
6.2.6.    油层套管固井前,要求必须调整泥浆性能,在保证井眼安全的前提下,主要降低黏度、切力,为提高顶替效率和界面胶结创造最好的条件;
6.2.7.    油层固井要利用相关软件对油气层、压力异常层进行动态压力计算,确保在施工过程中的全程压力变化满足特定的要求;
6.2.8.    对于电测显示有气帽或油帽的井,要求在水泥浆浆柱结构上,在其以上设计50~100 m的盖浆(比重比常规领浆适当提高);
6.2.9.    电测第一趟后校核井底温度, 油层按85~75%,但还要根据不同的实际井况进行调整,避免千篇一律;
6.2.10.    根据现场的实际情况确定顶替技术,在能够保证清洗效果的前提下,尽可能采用低返速顶替,减少作用在薄弱油层或断层上的循环压力;
6.2.11.    下钻钻水泥塞,其推荐参数:WOB:1~3T,ROP:40~60,SPM:100~120;
6.2.12.    CBL测井,套管试压;
6.2.13.    在注替过程中,要求钻台和气测自始至终监视泵压和井口返出情况;
6.2.14.    对于投弹打开分级箍的井,加压时间宜晚不宜早,压耐心等待炮弹到位,充分考虑反复加压对一级水泥浆凝固的影响,尤其是一级碰压不正常的井;
6.2.15.    开盖投塞时,要尽量快,推荐直接砸开固井管线以求最快;
6.2.16.    对于几近全封的井,一级固井的稠化时间要适当长,保证分级箍之上的水泥浆能顺利被循环出;
6.2.17.    对于双级固井,为防止留高水泥塞和替空,在替泥浆(完井液)前,泥浆泵必须提前进行低压循环,以保证上水效率,并且活动循环池的体积必须是可以计量的;万一发生到正常设计替量还不碰压的情况,要综合分析当时情况相机处理,但原则要求能留塞不替空;
6.2.18.    对于油气比较活跃的井,要求在注替全程的动态当量比重不小于地层的孔隙压力,同时环空内要蹩压候凝;
6.2.19.    对于浅井,为提高顶替效率,在注替量小于套管内容的前提下,推荐把底胶塞投在冲洗液前边;
6.2.20.    对于初探井,最大顶替排量原则要求不大于钻进时最大返速(BHA处)的1.2倍;在已有作业经验的基础上才可突破这一界限;
6.2.21.    对于井况相对复杂的作业,施工前应充分考虑可能出现的不正常情况,力戒无的放失、乱中出乱。
6.3.    疑难答疑
6.3.1.    为什么要进行双级固井?
A)    全井段封固,或一个井段要求用不同的水泥浆进行封固;
B)    只要求封固某一特殊井段;
C)    有不可逾越的漏失层;
D)    不同产层相距太远;
E)    地层或套管难以承受按正常封固原则所进行的固井作业;
F)    保证固井质量,提高顶替效率和减少串槽等。
6.3.2.    什么时候要使用液压分级箍,什么时候不要液压分级箍?
A)    井斜角大于30°;
B)    井下有DLS严重段;
C)    有缩径、塑性或蠕变地层;
D)    井下有实际或潜在的桥堵、漏失情况;
E)    高压井的固井。
6.3.3.    套管到位后开不开泵?
A)    套管串内进入沙子泥块等;
B)    单流阀(自动灌浆)被卡死;
C)    泥浆太脏;
D)    井深,温度高,泥浆胶凝强度大;
E)    液压分级箍打开压力限制。
6.3.4.    循环时蹩泵、蹩漏?
A)    循环排量太大;
B)    开泵或泵速提升太快;
C)    泥浆中岩屑、沙子含量高。
6.3.5.    循环时发生明显漏失?
A)    防止静压差作用打开分级箍(维持环空液面);
B)    采用小粒径堵漏材料堵漏;
C)    逐渐循环提升泵速到设计循环排量,避免草率固井;
D)    重新调整固井设计。
6.3.6.    注水泥时发生明显漏失?
A)    设计水泥浆量不变;
B)    塞流替泥浆,若时间允许,控制到最慢。
6.3.7.    一级注水泥碰不了压?
A)    确认是否有碰压显示;
B)    不论如何候凝至一级水泥浆终凝。
6.3.8.    分级箍打不开或关不了?
A)    这个问题是难以回答的;
B)    使用钻杆。
7.        尾管固井程序    
7.1.    推荐程序
      TIW 7″尾管悬挂器采用液压座挂系统,根据该工具的现场使用经验和推荐使用方法,其作业遵循“下的去、挂的住、倒的开、起的出” 的总原则。
7.1.1.    准备工作:
    安装S/S,F/C,L/C,在丝扣处使用T-Lock,禁止电焊,
    检查尾管挂的工况,包括工具外观、方反扣(防转标记)、液压缸、卡瓦片和剪切销钉等,
    对入井钻具、工具、尾管、回接筒进行通径,
工具ф60.3*250mm通径规通径,下入钻具ф75*250mm通径规通径,尾管用ф153.8*300mm通径规通径,
    座挂系统的紧扣标准
粗反扣: 80kg-m, 其它按套管上扣标准,
    座挂系统及附件逐一检查,丈量尺寸,并绘图,
附件包括:尾管双阀档球板鞋,浮箍,碰压短节,套管塞悬挂短节,套管胶塞,液压尾管悬挂器,密封短节,回接筒,下入工具,水泥头,钻杆胶塞,套管扶正器(包括刚性和弹性)等,
    液压悬挂器系统的组装和保护
按推荐方法组装悬挂器,进行试压,合格后中心管涂黄油加段套管,卡瓦处加木板保护包装,方反扣按上扣扭矩上扣,在轴线上用油漆作好标记,防止倒扣的现象发生,
    下套管前校正指重表,后使用原钻具通井,要求分段大排量循环泥浆,井眼无阻卡、无沉砂;之后,同时处理泥浆,要求低粘低切,含砂量小于0.3%,气全量小于1%,
    起钻前,测钻杆悬重(上提、下放和静止),测量泥浆泵的泵效,
    按水泥化验和用水量配置混合水,搅拌待用;注意保证泥浆池及相关管线、闸门干净密封无串漏,对非渗透体系要求品尝淡水水质(CLˉ<500PPM);
7.1.2.    下尾管:
    按尾管表依次下井,底部5根尾管需涂T-Lock 或点焊三段,保证钻水泥塞时尾管的安全,同时灌满检查S/S、F/C及球座的畅通和防回压能力,
    套管扶正器的加放原则,按套管表标示进行,
    上扣标准:
按推荐扭矩值1000kg-m上扣到“△”符号底线齐或±1扣,记录前10根尾管上扣扭矩,以后按前10根尾管的平均上扣扭矩上扣,不定期和“△”符号核对,
    尾管入井前,检查方反扣松紧和倒扣难易程度,同时检查液压剪切销钉,
    灌泥浆要求:    
前10根尾管每根灌满一次,以后每10根灌满一次,钻柱每一柱灌一次,每10柱灌满一次,同时记录灌入量是否和排液量相符,尾管入井后和出套管鞋前都要求灌满打通一次,尾管进入裸眼段后利用“虚”起下钻灌浆,
    钻具下放速度:                                            
上层套管内每分钟1~1.5柱,裸眼段1—3分钟下一柱,禁止使用转盘上扣;出上层套管后静止时间不许过长,超过5分钟应活动套管防止卡尾管,
    连接尾管悬挂器和套管胶塞,上尾管挂时应放松大钩悬重,防止粗反扣在上扣过程中倒开扣,
    下入工具接好后,回接筒内灌满丝扣油,盖好回接筒内顶部的防砂帽,防止杂物或泥沙堵塞方反扣,
    灌满泥浆,接方钻杆循环,控制压力小于40KSC,记录泵冲、泵压和返出,同时观察密封情况,记录悬重和上提下放重量,
    尾管挂下过转盘后,把转盘销子锁死,严禁钻具旋转,使用旋扣钳和内外钳紧扣,
    下到9-5/8”套管鞋后灌满一次,打通井内泥浆,记录泵冲、泵压及悬重数据,
    尾管送到位后,先探底后灌满泥浆,用10-20spm的排量打通,然后大排量循环(小于钻进时上返速度),同时上下活动2~3m,
    循环1~1.5个迟到体积,压力不能超过80KSC,震动筛返出无沉砂后,再准备座挂尾管
7.1.3.    尾管座挂步骤    
a:    在座挂深度作标记后,再上提2~2.5m(计算的方余),投铜球,用20spm~50spm顶替铜球,泵压不超过60KSC,
b:    铜球到位后慢慢将泵压升高到100KSC,座挂尾管悬挂器,注意悬重和标记,
c:    挂住后加压10吨,如果座挂一次不成功,可采取“逐步加压”再座挂,根据悬重和标记判断座挂成功后,慢慢提高泵压到180KSC,剪掉球座,停泵,(有的作法在此时要打通循环,做坐挂前后的对比循环实验),
d:    上提5T,正转倒扣5圈(注意扭矩),核对反转,继续5圈,15圈,总有效圈数不少于25,
e:    慢慢上提,在悬重不变(即只有钻具重量)后钻柱上提不超过1m(总共不超过1.5m),确认粗反扣倒开脱手,慢慢下放复位,并下压到原重(10T)
f:    低泵冲打通,正常后(15~20min)分阶段提高泵速,观察、记录、比较座挂前后的泵压(控制最高泵压小于8~10  Mpa)、返出,着重20、 40、 60、80、100spm的泵速,确认尾管有无短路发生;
7.1.4.    在循环二周后(要求振动筛干净,井眼内无沉砂,原则要求气全量小于1%,),做泵效试验;连接水泥头及固井管线,装钻杆塞,准备注水泥作业;
7.1.5.    通水试压3000psi*5min,确认后开始注水泥作业;
7.1.6.    固井泵注冲洗液隔离XX m3;    建议使用冲洗剂和稠悬浮剂;
7.1.7.    注水泥浆:    领浆XX    m3;比重1.65~1.75sg;
              尾浆XX    m3;比重1.85~1.92sg;
7.1.8.    投小胶塞;
7.1.9.    固井泵注尾水(建议尾水前加1~2BBL的水泥浆);
7.1.10.    替泥浆XX m3,高泵速替至尾浆出鞋到内外平衡前某一适当时刻,然后慢替到碰压;注意:尾管固井推荐使用紊流高速替泥浆,但大小胶塞啮合前后适当降低泵速,返推泥浆泵效(如有发生桥堵可能时除外);
7.1.11.    放压,确认回流,若单流阀失效,则替回(有碰压显示即可)视情况进行最短时间的蹩压候凝;
7.1.12.    先卸下尾管水泥头及固井管汇,接方钻杆,憋压30KSC,正转5圈,慢慢上提10T,等待2min后,    再提出送入工具,注意悬重变化和泵压释放;之后,视具体井况决定是开泵循环清洗尾管顶部的水泥浆,还是直接起钻或蹩压候凝。
7.1.13.    注意事项:
1)    防止尾管及钻杆内落物,尾管丝扣油在甲板上涂好,钻杆丝扣油在钻柱公扣上涂好;推荐在最后一次通井时通径,只用一个通径规并且严防坏钻杆入井,
2) 如下套管中途井漏,根据实际井况与钻井监督商量解决办法,
3)    特殊情况下进行中途循环,其压力不能超过60KSC,防止悬挂器中途座挂,
4)    替泥浆时,专人观察泥浆池内液面的变化和井口返出,
5)        推荐最后一根单根预先在鼠洞内与方钻杆连好,  防止粘卡尾管,
6)        起下钻都用旋扣钳    。
7.2.    技术要点
7.2.1.    一般要求尾管重叠段为150~200m,气井要求200~300m;
7.2.2.    根据不同的井身结构,在井底BHST大于230℉/110℃后,使用35%的硅粉水泥以防止水泥石强度衰退,但在探井不保留井口的情况下可以适当放宽;稠化时间要充分考虑工具最终丢手时的突发情况和循环尾管顶部的时间,原则要求不小于四小时;
7.2.3.    确定合理的附加量,根据封固要求和地层特性,设计裸眼和重叠段的水泥浆比重和封固长度;油气活跃或泥浆比重大于1.44sg的井要求有50m盖浆;
7.2.4.    合理套管扶正器加放以保证居中,底部五根管串要求1ea/1jts,其它井段1ea/2~3jts(生产井遵循2ea/3jts的总原则),但在隔层或油水同层段必须保证1ea/1jts;同时,悬挂器下要加放1~2个扶正器,上层套管鞋内加2~4个扶正器;
7.2.5.    最后一趟通井,要求必须调整泥浆性能,测量钻具上提、下放和静止的悬重。在保证井眼安全的前提下,主要降低黏度、切力和含砂量,为安全作业,提高顶替效率和界面胶结创造最好的条件;
7.2.6.    保证套管内灌泥浆干净(通过沉砂池);严防沉砂进入套管内;注意尾管套管一般不允许掏空;
7.2.7.    套管到位后,先探底在上提;小排量打通正常后循环一周,要求排量6~8BPM或控制泵压小于70KSC,保证井底泥浆正常返出,防止蹩漏;
7.2.8.    注水泥前循环要求对照坐挂前的参数,确认中心管密封,尽可能提高排量;但常规井一般要求泵压小于10Mpa(4000m*1.44sg);
7.2.9.    油层固井要利用相关软件对油气层、压力异常层进行动态压力计算,确保在施工过程中的全程压力变化满足特定的要求;
7.2.10.    对于上层套管近处有活跃气层的井,可以要求在重叠段使用ECP,以加强水泥浆浆柱结构;
7.2.11.    电测第一趟后校核井底温度, 油层按85~90%,同时必须平衡考虑井底和重叠段的温度,但还要根据不同的实际井况进行调整,避免千篇一律;
7.2.12.    根据现场的实际情况确定顶替技术,在保证井下安全的前提下,尽可能采用紊流顶替;
7.2.13.    下钻钻水泥塞,其推荐参数:WOB:1~2T,ROP:40~60,SPM:80~100;
7.2.14.    CBL测井,套管试压;
7.2.15.    在注替过程中,要求钻台和气测自始至终监视泵压和井口返出情况;
7.2.16.    对于塔式钻具要确认接头导角和小胶塞的形状;
7.2.17.    在确认大小胶塞啮合时,排量降低不宜过大,以防砂子、岩屑沉积而对最终丢手造成影响;
7.2.18.    对于尾管固井,为防止留高水泥塞和替空,在替泥浆(完井液)前,泥浆泵必须提前进行低压循环,以保证上水效率,并且活动循环池的体积必须是可以计量的;万一发生到正常设计替量还不碰压的情况,要综合分析当时情况相机处理,但原则要求能留塞不替空;
7.2.19.    对于油气比较活跃的井,要求在注替全程的动态当量比重不小于地层的孔隙压力,同时套管内要蹩压候凝;
7.2.20.    对于初探井,最大顶替排量原则要求不大于钻进时最大返速(BHA处)的1.2倍;在已有作业经验的基础上才可突破这一界限;
7.2.21.    对于井况相对复杂的作业,施工前应充分考虑可能出现的不正常情况,力戒无的放失、乱中出乱。
7.3.    疑难答疑
8.1.1.    为什么要进行尾管固井?它的用途?
A)    经济性,节省套管;
B)    井眼条件,如钻进的水力参数,套管串的拉伸载荷要求;
C)    平台载荷及绞车提升能力的限制
D)    钻进、测试、生产工艺的要求(技术、生产、补贴和回接尾管)
E)    深井钻井;
F)    有不可逾越的漏失层或异常高压层;
G)    控制井下流体运移或屏蔽疏松、垮塌地层;
H)    封固产层;
I)    修补已损坏的套管。
8.1.2.    什么时候要使用液压尾管?
A)    定向井(20°);
B)    井下有DLS严重段,键槽井段;(活动)
C)    井下有实际或潜在的桥堵、漏失情况;(downjet)
D)    井内已经有一层尾管。
8.1.3.    尾管送入工具起不出或带出尾管来?
A)    反扣没有脱开或固井过程中重新振动粘连;    固井是适当加压,起钻前重复到扣;
B)    岩屑、沙子进入回接筒;    灌黄油;通井循环干净;隔离液黏度、携砂力要高;
C)    混浆水泥浆提前稠化;    
D)    实在不行,将富余水泥浆反挤入地层;(使用油管或小钻杆时)
8.1.4.    尾管坐挂时蹩压不利?
A)    球座或密封盒密封失效;   正确组装和涂油
B)    球座刺坏或有杂物;   循环排量不宜过大,时间不宜过长
C)    尾管胶塞提前下落;   猛提猛放,压力激动。
8.1.5.    循环时发生明显漏失?
A)    防止静压差作用打开尾管(维持环空液面);
B)    采用液体堵漏材料堵漏;
C)    逐渐循环提升泵速到设计循环排量,避免草率固井;
D)    重新调整固井设计。
8.1.6.    尾管挂提前坐挂或脱落?
A)    液压销钉没有安装到位或落失;
B)    在入井过程中有碰、挂,或压力激动、循环泵压过高;
C)    反扣没有到位或入井过程中使用了转盘上、卸扣。
8.1.7.    尾管坐挂不上?
A)    井眼曲率大,卡瓦没有完全吃力;
B)    上层套管磨损或钢级相差太大;
C)    尾管串太短;
D)        丢底坐挂,但注意开泵蹩泵。
8.1.8.    其它尾管固井常见问题
A)    提前碰压;
B)    不能碰压;
C)    替空;
D)    环空桥堵;
E)    单流阀失效,水泥浆倒流;
F)    循环清洗时发生井漏;
G)    循环清洗时冲洗隔离液重新入井导致溢流。
                    
四、有关计算                                                                                                
8.        EZSV挤水泥程序    
8.1.    推荐程序
8.1.1.    钻台先接一单根,然后连接座封工具,在stinger上涂抹黄油后缓慢插入派克中,再连接工具和应力套。注意,应力套必须上到位,但也不能过紧
8.1.2.    小排量(<15spm)开泵,检查滑阀位置和密封情况
8.1.3.    继续均匀送钻到底,在下钻过程中,必须锁紧转盘防转,同时禁止猛刹,猛提和猛放
8.1.4.    下钻到预定深度后,接顶驱打通,建立循环(循环时间最好在一小时内),同时上下活动管串5~10次,活动距离3~5feet,循环排量上限为:                   4"~5 1/2":2BPM,    6 5/8"~8 5/8":6BPM,        9 5/8"~13 3/8":8BPM
8.1.5.    停止循环后,立即正转35圈,座封上卡瓦
8.1.6.    其后,上提约1/3大小的派克应力套断裂拉力值,拉持2 min,(注:9 5/8"派克应力套断裂拉力约为50,000lb)
8.1.7.    其后,继续上提约2/3大小的派克应力套断裂拉力值,拉持2 min
8.1.8.    最后,直接提断应力套,座封下卡瓦
8.1.9.    对派克加压(可高达两倍应力套断裂拉力即100,000lb),增加座封程度
8.1.10.    关BOP对环空试压1500psi,检查环空的密封情况
8.1.11.    卸压,上提至中性点,再上提stinger3~9"(不要提出派克),管串试压,试压值为挤水泥作业的最高压力,检查管串和滑阀的密封情况
8.1.12.    正转20圈释放座封套
8.1.13.    再以10SPM开泵下插stinger
8.1.14.    试挤,记录1/2BPM,1BPM,2BPM时的挤入速度,判断地层吸纳能力
8.1.15.    提出stinger,准备施工,钻台提前做好下插准备
8.1.16.    按计划注前置液,混注水泥浆
8.1.17.    用固井泵高速顶替水泥浆至派克顶部约100米,停泵,钻台下插stinger,关BOP环空加压1500psi,准备挤水泥
8.1.18.    固井泵按设计进行一次挤水泥作业
8.1.19.    挤水泥结束后,环空卸压开BOP,立即直接提出stinger ,再在派克顶部倾注一定量的水泥浆做水泥塞
8.1.20.    起钻三柱,循环一周,POOH。

8.2.    技术要点

8.3.    疑难答疑


9.        EZSV挤水泥程序    
9.1.    推荐程序

9.2.    技术要点

9.3.    疑难答疑
Ten Steps To Improve Your Next Cement Job
by Charles George, Halliburton Services, Duncan, Okla.


Many cement jobs fail because job planning failed. Blindly cementing a well without regard to what a cement job is supposed to accomplish can lead to well problems and expensive well repairs. These  problems can include channels in the cement, unwanted water, gas or fluid production, and pipe corrosion. All require remedial cement jobs and/or expensive repair work.
With only one chance to circulate the cement, the best insurance for a quality job is a thorough understanding of the well parameters and the proven techniques for success. The following 10 considerations have been proven to enhance the quality of the primary cement job. The cost of using these additional factors to help ensure a successful primary cementing job is much less than the cost of later remedial or repair work.

1    Condition the Drilling Fluid
Conditioning drilling fluid before cementing is probably the most important factor for displacement. Drilling fluid properties need to be considered from a cementing standpoint because conditioned fluid helps prevent formation of highly gelled drilling fluid and thick filter cake. The drilling fluid must flow readily, allowing the cement to displace the drilling fluid easier. Drilling fluid becomes difficult, if not impossible, to displace if it loses its fluidity.
To improve drilling fluid mobility before a cement job, circulate the drilling fluid so that it is completely fluidized; reducing the viscosity of the drilling fluid by breaking the gel structure during prejob circulation also will enhance drilling fluid flow.
To test the drilling fluid, the yield point and a 10-minute gel strength test can indicate how well the gelled drilling fluid regains fluidity. Good fluid retuins at the surface cannot tell you it you have a mobile drilling fluid in the annular space. It is best to run a fluid caliper to determine how much drilling fluid id moving before cementing.

2    Pipe Movement
The pipe needs to be rotated or reciprocated before and during cementing to break up gelled, stationary pockets of drilling fluid and loosen cuttings accumulations in the gelled drilling fluid. Pipe movement allows high displacement efficiency at lower pumping rates because it keeps to help the drilling fluid flowing. If the pipe is poorly centralized, pipe movement can compensate because it changes the area of least resistance around the casing and helps to circulating the cement slurry completely around the casing.

3    Maximize Displacement Rate
High displacement efficiencies generally occur at the highest displacement rates. Turbulent flow conditions are not necessary, but they enhance displacement efficiencies. For example, in large-scale slurry displacement tests, thin slurry placed under turbulent flow conditions show higher displacement efficiencies than thicker cement in lower flow rates. Field tests show that annular velocity greatly effects displacement efficiency. If turbulent flow is not a viable option for the formation, pump rates still should be maximized for highest displacement efficiency.

4    Casing Equipment
Centralize casing with casing centralizers facilitate good drilling fluid displacement. Cement jobs in poorly centralized pipe tend to bypass the drilling fluid by flowing the path of least resistance, or the wide side of the annulus. Good standoff also helps increase drilling fluid removal by equalizing the forces exerted around the casing by flowing cement. Mechanical scratchers attached to the casing further help to clean mud cake off the formation face. Scratchers should be chosen based on the type of casing equipment being used, the type of formation and the type of drilling fluid. Scratchers and wall cleaners maximize the effects of pipe movement by physically scratching away excess gelled filter cake.
Guide shoes, float shoes and float collars are used for guiding, floating, and cementing casing. The floating equipment back pressure valve should be durable because large volumes of drilling mud may be circulated to condition the hole. After the cement job complete, the back pressure valve keeps the cement behind the casing. The density of cement is commonly greater than the density of displacing fluid, and this differential pressure across the float valve helps keep the valve closed. The valve must have higher durability and strength to hold pressure. If the valve does not hold back pressure, the pressure is held on the casing during cement curing. When the cement sets and pressure is released, this may leave a microannulus between the casing and cement sheath.
Float equipment is rated as per an API Recommended Practice into different classes of performance. The proper selection of floating equipment needs to be based on the well conditions. Other floating equipment is available with automatic fill devices to allow casing to fill as it is being run.
Using a bottom rubber wiper plug can keep drilling fluid and cement separated. The plug also wiper the excess drilling fluid film from the inside the casing. A top rubber wiper plug then can be injected following the cement and, when displacement is complete, it will sit on the bottom plug and provide an indication on the surface that the job is complete.
Nonrotating plugs that lock when they seat can save operators many hours of expensive rig time when drilling. The locking mechanism prevents the rubber wiper plug from spinning during drillout. Cementing heads have been designed to release rubber wiper plugs automatically, which keeps all fluids moving, thus preventing static time and gelation of fluids.

5    Spacers and Flushes
Spacers separate unlike fluids such as cement and drilling fluid; this action remove gelled drilling fluid, which makes for a better cement bond. The use of spacers also can help avoid fluid incompatibility and contamination problems. The lower viscosity of spacers keeps frictional pressure lower. In large-scale cement displacement tests, lightweight, low-viscosity spacer fluid improved drilling fluid removal by eroding the gelled cake and increasing mobility of drilling fluid.
Spacer can be designed for well control or to reacted with the chemical components of filter cake to improve cement bond. Spacers can be as simple as water or as complex as a weighted spacer. The amount of time the spacer fluid remains in the well also should not be neglected. The fluid should remain in contact with the formation for at least 10 minutes to obtain proper cleaning while the displacing fluid is being pumped at the highest possible velocity, maintaining well control throughout.
Flushes are used to thin and disperse drilling fluid particles. Flushes go into turbulent flow at low rates, which helps to clean out more drilling fluid from the annulus. However, flushes generally have a density that is close to that of water and may not provide adequate well control; therefore, weighed spacers are recommended.
6    Cementing Temperature
Cementing temperature conditions are important because bottomhole circulating temperatures affect cement thickening time, rheologe, set time, and compressive strength development. Knowing the actual temperature that cement encounters during placement allows the selection of proper cementing materials for a specific application.
A new, downhole temperature sub recorder can be used to measure the circulating temperature of the well before a cement job. Cement slurries can be designed to achieve good compressive strength development in a minimum amount of time once the circulating temperatures of the well are kown. The rate at which cement slurry is heated affects the retarder additive concentration need to obtain optimum thickening time. A better estimate of time to temperature could help operators better estimate the amount of retarder needed, which will help prevent overretardation.

7 Selecting and Testing Cementing Composition
Cementing slurry should have a higher density than the drilling fluid to facilitate displacement, yet should not be high enough to exceed the fracturing pressure of the weakest formation. To help prevent an increase in frictional pressure, the slurry also should not begin to thicken before it has been placed. A properly designed slurry meets all known well requirements. Slurry design is affect by well depth, bottomhole circulating temperature, and static temperature; drilling fluid hydrostatic pressure; type of drilling fluid; slurry density; pumping time; quality of mixing water, fluid loss control; flow regime; settling and free water; dry or liquid additives; strength development; and quality of the cement testing lab and equipment.
Before the job, check the reaction of the cement and the actual mix water on location to ensure the formulation will perform to expectations. Large variances in thickening time and compressive strength can occur when the slurry is not designed to consider contaminates in the mix water.
Organics and dissolve salts in the mix water can affect slurry setting time. Organics generally retard the set of the cement; inorganic materials generally accelerate the set of the cement. Raw materials and plant processing methods vary widely and can cause tremendous variation in cement quality. Therefore, cement must be tested to ensure that it can provide a quality job with the available additives.
Additives that can provide fluid loss control should be used when necessary to avoid cement dehydration (which can cause high pump pressure during displacement) and loss of filtrate to permeable formations. Loss of filtrate from the cement slurry may cause bridging and increases in friction pressure, viscosity, and density.

8 Additional Prejob Considerations
Other prejob considerations should be followed as part of a routine(例行) well job. For example, prejob computer cement simulator must be run using the known well parameters(fluid densities, pump rates, fluid rheologycal properties) to determine maximum pump rates without breaking down the weakest formation.
Simulators also allow operators to see the effect of various cement job parameters before a job start. Most potential problems can be avoided by performing a prejob simulation.
Other considerations include:
•    State or government regulations.
•    Hole size, depth(TVD, MD), caliper log.
•    Type of drilling fluid and density.
•    Casing size.
•    Special casing equipment.
•    Lithology.
•    Directional survey.
•    Fracture gradient.
•    Formation pressures and differential pressures.
•    Loss circulation.
•    Gas migration potential.
•    Type of mix water and volume.
•    Displacement fluid, density, and volume
•    Temperature requirement for silica flour.
•    Waiting on cement requiements.

9    Job Execute
When running the job, two axiom must remember: “Never assume, always check” and “never estimate, always calculate.” This means that everyone on jobsite must know what function he is to perform and when. Prejob meetings should be held to provide good job execution and teamwork on the job to avoid misunderstanding and avoid time lags(间隔) and delays that could be critical to cement performance.
Ensure proper calibration of all equipment before beginning the mixing process. The job must be under constant control to ensure success. Real-time data acquisition devices can monitor flow rates, densities, rates in/out, and pressure for a job as it is being running, allowing operators to make some on-site decision. Generally, the data use for postjob analysis, which helps to determine the quality of the cement job as well as planning for future jobs.
The cement slurry was designed in the cement laboratory to give special parameters such as thickening time , fluid loss, compressive strength, etc.; the controlling factor on location to achieve these properties is density. Slurry density must be regulated during mixing by measuring the density under pressure to compensate for air entrainment. This can be accomplished using recirculaing mixers and batch tanks or by using an axial flow recirculating mixer, which can mix and pump cement on the fly using high-energy mixing.
Batch mixing is sometimes used to ensure that all the cement is properly mixed before the job is pumped; however, new developments in mixing equipment, computers, and density controls have reduced this need. If batch mixing is used, the holding time at the surface should be incorporated into the thickening time test because some slurry properties can change during this holding time.

10    Evaluation(Bond Log)
An acoustic casing bond log or an ultrasonic well log can be used to evaluate a cement job by checking for the presence of set cement in the annulus, regardless of density, compressive strength, or quality of cement. Acoustic log tools can provide a response for bonding of cement to casing and formation; however, they are extremely sensitive to a microannulus. In the presence of microannulus, acoustic logs may indicate a poor primary cement job, whereas a good annular seal could be present.
Logs from ultrasonic tolls are limited to determining only the quality of the cement bond against the casing but will interpret across a larger microannulus than an acoustic tool. Channels that do not contact the casing surface, such as channels against the formation face or channels within the cement sheath, cannot be detected by any currently available cement evaluation devices.
Even if the cement-to-casing bond is good, the log only provides a measure of the bond, not displacement efficiency or annular seal. To determine job quality for the rest of the annular space, interpolation and algorithms are used to estimate the quality of the job. How ever, bond log results are open to varying interpretations. In field practice, a good bond log does not necessarily mean there is an annular seal; conversely, a good annular seal could exist despite a poor bond log evaluation. New, more accurate methods are being developed.
A second job evaluation method is to perforate and bring the well on line, If the well produces unwanted fluid, remedial work will be required. This method ultimately saves time and effort for the operator because if the interpretation of a bond log determines that the cement job failed, the well still will have to be perforated and repaired.

1条评分
wengjizhi 财富 +40 有效资源 2011-03-05
评价一下你浏览此帖子的感受

精彩

感动

搞笑

开心

愤怒

无聊

灌水
离线swplqg
发帖
955
财富
18
威望
6
交易币
0
只看该作者 1楼 发表于: 2011-03-06 | 石油求职招聘就上: 阿果石油英才网
学习了,谢谢!
离线wwllocl
发帖
194
财富
181
威望
3
交易币
0
只看该作者 2楼 发表于: 2011-03-06 | 石油求职招聘就上: 阿果石油英才网
学习了,谢谢!
离线驰骋
发帖
1042
财富
4407
威望
63
交易币
0
只看该作者 3楼 发表于: 2011-03-06 | 石油求职招聘就上: 阿果石油英才网
难得的资料,谢谢楼主
离线花开不败
发帖
95
财富
26
威望
0
交易币
0
只看该作者 4楼 发表于: 2011-03-06 | 石油求职招聘就上: 阿果石油英才网
不错,学习学习!!!
离线xcy198809
发帖
722
财富
38
威望
1
交易币
0
只看该作者 5楼 发表于: 2011-03-06 | 石油求职招聘就上: 阿果石油英才网
非常有用,学习了,我的专业
离线treetosky
发帖
14
财富
35
威望
0
交易币
0
只看该作者 6楼 发表于: 2011-03-06 | 石油求职招聘就上: 阿果石油英才网
xiexiele
离线cloud2008lz
发帖
283
财富
269
威望
2
交易币
0
只看该作者 7楼 发表于: 2011-03-07 | 石油求职招聘就上: 阿果石油英才网
难得的资料,谢谢
yyyyyyyyy
离线xunds
发帖
581
财富
12
威望
8
交易币
0
只看该作者 8楼 发表于: 2011-03-07 | 石油求职招聘就上: 阿果石油英才网
海洋固井
离线西北狼
发帖
878
财富
1112
威望
9
交易币
0
只看该作者 9楼 发表于: 2011-03-07 | 石油求职招聘就上: 阿果石油英才网
复制粘贴了,谢谢
WWWooooooooooooowww!

网站事务咨询:QQ:1392013 | 26189883
阿果石油网为免费个人网站,为石油人提供免费的在线即时技术交流场所,拒绝任何人以任何形式在本论坛发表与中华人民共和国法律相抵触的言论和行为!
如有言论或会员共享的资料涉及到您的权益,请立即通知网站管理员,本站将在第一时间给予配合处理,谢谢!